skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Piccirillo, Lisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract One strategy for distinguishing smooth structures on closed 4‐manifolds is to produce a knot in that is slice in one smooth filling of but not slice in some homeomorphic smooth filling . In this paper, we explore how 0‐surgery homeomorphisms can be used to potentially construct exotic pairs of this form. To systematically generate a plethora of candidates for exotic pairs, we give a fully general construction of pairs of knots with the same zero surgeries. By computer experimentation, we find five topologically slice knots such that, if any of them were slice, we would obtain an exotic 4‐sphere. We also investigate the possibility of constructing exotic smooth structures on in a similar fashion. 
    more » « less
  2. From a handle-theoretic perspective, the simplest contractible 4-manifolds, other than the 4-ball, are Mazur manifolds. We produce the first pairs of Mazur manifolds that are homeomorphic but not diffeomorphic. Our diffeomorphism obstruction comes from our proof that the knot Floer homology concordance invariant ν is an invariant of the trace of a knot, i.e. the smooth 4-manifold obtained by attaching a 2-handle to the 4-ball along K. This provides a computable, integer-valued diffeomorphism invariant that is effective at distinguishing exotic smooth structures on knot traces and other simple 4-manifolds, including when other adjunction-type obstructions are ineffective. We also show that the concordance invariants τ and ϵ are not knot trace invariants. As a corollary to the existence of exotic Mazur manifolds, we produce integer homology 3-spheres admitting two distinct surgeries to $$S^1 \times S^2$$, resolving a question from Problem 1.16 in Kirby's list. 
    more » « less